Algebraic Number Theory Exercise Sheet 10

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	08.01.2025

Exercise 1. Let d be a square-free integer, $d \not\equiv 1 \mod 4$. Let $K = \mathbb{Q}(\alpha)$ be a quadratic field, where $\alpha^2 = d$. Let p be a prime number in \mathbb{Z} . Describe the decomposition of the ideal $(p) \in \mathfrak{F}(\mathcal{O}_K)$ into a product of prime ideals. *Hint:* Use Satz 42 (see Exercise 1, Sheet 7) from the lecture.

Exercise 2. Let $K = \mathbb{Q}(\alpha)$ be a quadratic field, where $\alpha^2 = -6$. Find $C(\mathcal{O}_K)$ for d = -6. *Hint for (1) and (2):* Use the inequality from Korollar 9 (Chapter II) and estimate $(\frac{4}{\pi})^{r_2} \frac{n!}{n^n} \sqrt{|d_K|}$.

Exercise 3. Let A be a Dedekind ring. Show that every ideal $I \subset A$ can be generated by two elements.

Hint: Take $a \in I \setminus \{0\}$. Decompose the ideals I and (a) into a product of prime ideals and compare these decompositions. Use Exercise 1, Sheet 9, to find $x \in A$, such that (a, x) = I.